Oxidative Addition of 1,3-Diynes at Triosmium Clusters with Cleavage of the Central Carbon–Carbon Bond: X-Ray Crystal Structure of $[Os_3(\mu_3,\eta^2-C_2Ph)(\mu-C_2Ph)(CO)_9]$ derived from 1,4-Diphenylbuta-1,3-diyne

Antony J. Deeming,** Mark S. B. Felix,* Paul A. Bates,^b and Michael B. Hursthouse*^b

^a Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.

^b Department of Chemistry, Queen Mary College, Mile End Road, London E1 4NS, U.K.

The diyne clusters $[Os_3(\mu_3,\eta^2-RC\equiv CC\equiv CR)(CO)_{10}]$ (R = Me, Et, Ph, Bu^t, SiMe₃) in hydrocarbon solvent at 120 °C decarbonylate to give the nonacarbonyl clusters $[Os_3(\mu_3,\eta^2-C_2R)(\mu-C_2R)(CO)_9]$ when R = Ph, Bu^t, or SiMe₃, $[Os_3H(\mu_3,\sigma,\eta^2,\eta^2-EtC\equiv C-C=C=CHMe)(CO)_9]$ when R = Et, and $[Os_3(C_4Me_2)(CO)_9]$ of unknown structure when R = Me; the μ -C₂Ph ligand in $[Os_3(\mu_3,\eta^2-C_2Ph)(\mu-C_2Ph)(CO)_9]$ (X-ray structure) is unusual in bridging unsymmetrically through only one carbon atom.

Alkynes react with the cluster $[Os_3(CO)_{10}(MeCN)_2]$ to give the triply-bridging alkyne compounds $[Os_3(\mu_3,\eta^2-alkyne) (CO)_{10}$ ¹ which thermally decarbonylate to give nonacarbonyl clusters [Os₃(PhC₂Ph)(CO)₉] from diphenylacetylene,² $[Os_3H(MeC=C=CH_2)(CO)_9]$ from but-2-vne.3 and $[Os_3H(\mu_3,\eta^2-C=CR)(CO)_9]$ from terminal alkynes RC=CH.^{1,3} Except for the diphenylacetylene case, unsaturation resulting from the loss of CO is compensated for by oxidative addition with C-H bond cleavage. Related oxidative additions with C-Cl or C-P cleavage occur in the reactions of RC=CX $(X = Cl \text{ or } \tilde{PPh}_2)$ with $[Ru_3(CO)_{12}]$ to give $[Ru_3(\mu-X)(\mu_3,\eta^2-C\equiv CR)(CO)_9]$.^{4,5} We now report that in the case of 1,3-divnes similar oxidative additions can occur with C-C bond cleavage when there are no suitable C-H or other bonds to be broken. This is the first report of a bis(alkynyl) complex being formed in this way.

The diynes RC=CC=CR (R = Me, Et, Ph, Bu¹, or SiMe₃) react at room temperature with $[Os_3(CO)_{10}(MeCN)_2]$ to give the clusters $[Os_3(\mu_3,\eta^2-R_2C_4)(\mu-CO)(CO)_9]$ (1) (10—50%) in which only one of the alkyne groups is co-ordinated. We know this because clusters (1) are directly analogous spectroscopically to known mono-yne derivatives $[Os_3(\mu_3,\eta^2-R_2C_2)(\mu-CO)(CO)_9]$.¹ The ¹H n.m.r. spectrum shows that there are non-equivalent R groups in (1) and that the Os₃(CO)₁₀ group

Figure 1. Molecular structure of $[Os_3(\mu-C_2Ph)(\mu_3,\eta^2-C_2Ph)(CO)_9]$. Selected dimensions that are not given in Figure 2: Os(1)-Os(2)2.865(4), Os(1)-Os(3) 2.846(4), Os(2)-Os(3) 3.257(4), Os(1)-C(9)1.922(18), Os(2)-C(9) 2.235(17), Os(3)-C(9) 2.246(17), Os(2)-C(10)2.283(19), Os(3)-C(10) 2.297(17), C(9)-C(10) 1.333(22) Å; Os(1)-C(9)-C(10) 152.3(13), C(9)-C(10)-C(11) 141.7(16)°.

Figure 2. A comparison of the PhC₂ bridges in the two clusters: (a) $[Os_3(\mu,\eta^2-C_2Ph)(\mu-AuPMe_2Ph)(CO)_{10}]$ and (b) $[Os_3(\mu-C_2Ph)(\mu_3,\eta^2-C_2Ph)(CO)_9]$.

does not rapidly move between the two alkyne groups. In all cases clusters (1) decarbonylate in refluxing light petroleum (b.p. 120–160 °C) to give the nonacarbonyl clusters (2) to (4) with the stoicheiometry $[Os_3(R_2C_4)(CO)_9]$, but the nature of these species depends upon R.

When there are no C-H bonds α to the triple bonds in the diyne, the major product is $[Os_3(C_2R)_2(CO)_9]$ (2) resulting from the cleavage of the central C-C bond of the diyne. The i.r. spectra of clusters (2) (R = Ph, Bu^t, SiMe_3) are similar to that of $[Os_3H(C\equiv CR)(CO)_9]$ both in the number and frequency of absorptions around 2000 cm⁻¹, so they would seem to have all the same symmetry with H replaced by a symmetrical one-electron donating C₂R group. In the clusters $[Ru_3(\mu-X)(\mu_3,\eta^2-C_2R)(CO)_9]$ the Ru-Ru distances associated with the Ru-X-Ru bridge are very dependent upon X: 2.792(3) (X = H),⁶ 2.820(1) (X = AuPPh_3),⁷ 2.900 (X = HgBr),⁸ and 3.277 Å (X = Cl).⁴ This could reflect the size of X to some extent but also the number of electrons at X available

for M-X-M bonding. If X is a one-electron donor a single M–M bond is formally required, but no bond is required if \mathbf{X} is a three-electron donor. Alkynyl ligands may be one- or three-electron donor bridging groups and in [Ru₃(µ- C_2Bu^t)(μ , η^2 - C_2Bu^t)(PPh₂)₂(CO)₅(PPh₂C₂Bu^t)] both kinds of bridge are present.9 A single crystal X-ray structure of $[Os_3(C_2Ph)_2(CO)_9]$ was determined⁺ to establish unambiguously that C-C cleavage had occurred and to determine the nature of the alkynyl co-ordination. Figure 1 shows that the two PhC₂ fragments co-ordinate differently; the alkynyl C(9)C(10)Ph co-ordinates in a normal μ_3 , η^2 -manner but the co-ordination of the alkynyl C(1)C(2)Ph is unusual since it bridges a non-bonded pair of osmium atoms [Os(2)-Os(3) 3.257(4) Å]. The other two osmium-osmium distances are normal for metal-metal bonds. Since there is no Os(2)-Os(3)bond, the alkynyl should be a three-electron donor and we believe that this is correct even though it is not a normal μ,η^2 -bridging ligand. Figure 2 compares the geometry of a normal μ,η^2 -PhC₂ bridge as found in the cluster [Os₃(μ,η^2 - C_2Ph)(AuPMe₂Ph)(CO)₁₀]¹⁰ with that we now find in $[Os_3(PhC_2)_2(CO)_9]$. The Os(3)–C(2) distance is well beyond the normal bonding range [2.771(17) Å] and the PhC₂ ligand may be considered to be co-ordinated through C(1) alone, but it is very unsymmetrical. The geometry is approximately halfway between the normal μ , η^2 -mode shown in Figure 2(a) and the normal symmetrical one-electron donating manner. The C₂Ph ligand could be regarded as a three-electron donor with donation through just one carbon atom as in dinuclear aluminium alkynyl species such as $[Al_2Me_4(MeC_2)_2]^{11}$ and $[Al_2Ph_4(PhC_2)_2]$.¹² This appears to be the first transition metal example of this arrangement.

Hydrogenation of $[Os_3(C_2Ph)_2(CO)_9]$ (1 atm, octane, 125 °C) gave $[Os_3H_3(\mu_3-CCH_2Ph)(CO)_9]$ (17%) but we cannot tell which of the alkynyl ligands has been displaced from the cluster. The thermal decarbonylation of $[Os_3(Et_2C_4)(CO)_{10}]$ (1) leads to hydrido-complex (3) (Scheme 1) and we assume that the availability of C-H bonds adjacent to the alkyne group allows their cleavage in preference to C-C cleavage. However, the hexa-2,4-diyne compound $[Os_3(Me_2C_4)(CO)_{10}]$ decarbonylates to the non-hydrido species (4). Spectroscopic data‡ for (4) indicate that it is not related to compounds (2).

+ Crystal data for (2; R = Ph): $C_{25}H_{10}O_9Os_3$, M = 1024.9, monoclinic, space group C2/c (No. 15), a = 16.956(6), b = 9.950(2), c = 30.790(6)Å, $\beta = 95.88(2)^{\circ}$, U = 5167 Å³. Z = 8, $D_{c} = 2.635$ g cm⁻³, F(000) =3680, $\lambda = 0.71069 \text{ Å}$, $\mu(\text{Mo-}K_{\alpha}) = 147.9 \text{ cm}^{-1}$, crystal dimensions 0.73 \times 0.55 \times 0.48 mm. The structure was solved by the heavy atom technique and refined by full-matrix least-squares using absorption corrected data. Measurements were made on a CAD4 diffractometer using Mo- K_{α} radiation (graphite monochromator) $3 \le 2\theta \le 50^{\circ}$, h $(-20 \rightarrow 20) k(0 \rightarrow 12) l(0 \rightarrow 38), 5474$ reflections were observed, 3861 of which were independent $[I \ge 3\sigma(I)]$. All non-hydrogen atoms were refined anisotropically and all hydrogen atoms placed in calculated positions (C-H 0.96 Å, U = 0.10 Å²); 334 parameters refined. The final residuals R and R_w were 0.049 and 0.050 respectively. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

‡ Key spectroscopic data (i.r. in hexane; ¹H n.m.r. in CDCl₃ at 25 °C at 200 MHz). Compound (**2**; R = Ph): v(CO) 2092w, 2072vs, 2046vs, 2011vs, 2001s, 1976m, 1943vw cm⁻¹. (**2**; R = Bu¹): v(CO) 2089w, 2067vs, 2044vs, 2010vs, 1997vs, 1973m, 1942vw cm⁻¹; ¹H n.m.r. δ 1.57(s) and 1.13(s). (**2**; R = SiMe₃): v(CO) 2092m, 2067vs, 2045vs, 2010vs, 2001vs, 1978vs, 1972vs, 1940w cm⁻¹; ¹H n.m.r. δ 0.57(s) and 0.17(s). Compound (**3**): v(CO) 2095s, 2070vs, 2045vs, 2022vs, 2011s, 2002s, 1992m, 1982m, 1952vw cm⁻¹; ¹H n.m.r. δ 3.25 (q, J 5.4 Hz), 2.40 (q, J 7.4 Hz), 2.05 (d, J 5.4 Hz), 1.14 (t, J 7.4 Hz), -21.75 (s). Compound (**4**): v(CO) 2097w, 2071vs, 2045vs, 2038vs, 2014s, 2001s, 1973m cm⁻¹; ¹H n.m.r. δ 3.67 (s) and 2.11 (s).

The i.r. spectrum (v_{CO}) is significantly different while the two methyl ¹H n.m.r. singlets at δ 3.67 and 2.11 do not support a structure like that of $[Os_3(PhC_2)_2(CO)_9]$. We are trying to obtain crystals suitable for X-ray structure determination; the low field signal at δ 3.67 is very low and close to the μ_3 -CMe signals for known compounds. At present we do not know the structure of this nonacarbonyl derivative.

We thank the S.E.R.C. for support.

Received, 27th October 1986; Com. 1531

References

- 1 R. D. Adams and J. P. Selegue, 'Comprehensive Organometallic Chemistry,' Pergamon Press, Oxford, 1982, Ch. 33, p. 967; A. J. Deeming, *Adv. Organomet. Chem.*, 1986, **26**, 1.
- A. D. Clauss, J. R. Shapley, and S. R. Wilson, J. Am. Chem. Soc., 1981, 103, 7387; M. Tachikawa, J. R. Shapley, and C. G. Pierpont, J. Am. Chem. Soc., 1975, 97, 7172.

- 3 A. J. Deeming, S. Hasso, and M. Underhill, J. Chem. Soc., Dalton Trans., 1975, 1614.
- 4 S. Aime, D. Osella, A. J. Deeming, A. M. Manotti Lanfredi, and A. Tiripicchio, J. Organomet. Chem., 1983, 244, C47.
- 5 A. J. Carty, S. A. MacLaughlin, and N. J. Naylor, J. Organomet. Chem., 1981, 204, C27.
- 6 M. Catti, G. Gervasio, and S. A. Mason, J. Chem. Soc., Dalton Trans., 1977, 2260.
- 7 P. Braunstein, G. Predieri, A. Tiripicchio, and E. Sappa, *Inorg. Chim. Acta*, 1982, **63**, 113.
- 8 R. Fahmy, K. King, E. Rosenberg, A. Tiripicchio, and M. Tiripicchio Camellini, J. Am. Chem. Soc., 1980, 102, 3626.
- 9 A. J. Carty, N. J. Taylor, and W. F. Smith, J. Chem. Soc., Chem. Commun., 1979, 750.
- 10 A. J. Deeming, S. Donovan-Mtunzi, and K. I. Hardcastle, J. Chem. Soc., Dalton Trans., 1986, 543.
- 11 A. Almenningen, L. Fernholt, and A. Haaland, J. Organomet. Chem., 1978, 155, 245.
- 12 G. D. Stucky, A. M. McPherson, W. E. Rhine, J. J. Eisch, and J. L. Considine, J. Am. Chem. Soc., 1974, 96, 1941.